Metabolisme Lipid – Kelainan, Lemak, Pada Tumbuhan, Jalur Normal

Diposting pada

Metabolisme Lipid – Kelainan, Lemak, Pada Tumbuhan, Jalur Normal – DosenPendidikan.Com – Metabolisme merupakan semua proses yang kimiawi yang terjadi dalam tubuh makhluk hidup. Metabolism berasal dari bahasa Yunani, Metabole artinya ( berubah ) Proses metabolism ini melibatkan berbagai reaksi kimia. Reaksi-reaksi tersebut memerlukan energi, nah dari manakah energy tersebut didapatkan ???


Peran Metabolisme

Metabolisme berperan mengubah zat-zat makanan seperti: glukosa, asam amino, dan asam lemak menjadi senyawa-senyawa yang diperlukan untuk proses kehidupan seperti: sumber energi (ATP). Energi antara lain berguna untuk aktivitas otot, sekresi kelenjar, memelihara membran potensial sel saraf dan sel otot, sintesis substansi sel. Zat-zat lain yang berasal dari protein berguna untuk pertumbuhan dan reparasi jaringan tubuh. Hasil metabolisme tersebut kemudian dimanfaatkan oleh tubuh untuk berbagai keperluan antara lain: sumber energi, menggangti jaringan yang rusak, pertumbuhan, dan sebagainya.



Pengertian Metabolisme

Metabolisme adalah seluruh reaksi biokimiawi yang terjadi di dalam sel tubuh makhluk hidup. Metabolisme dapat dibedakan menjadi 2 (dua) macam proses yaitu anabolisme (penyusunan) dan katabolisme (penguraian). Anabolisme adalah sintesis makromolekul seperti protein, polisakarida, dan asam nukleat dari bahanbahan yang kecil. Proses sintesis demikian tidak dapat berlangsung tanpa adanya masukan energi. Secara langsung atau tidak langsung, ATP merupakan sumber energi bagi semua aktifitas anabolik di dalam sel. Metabolisme memerlukan keberadaan enzim agar prosesnya berjalan cepat. Hasil proses metabolisme berupa energi dan zat-zat lain yang diperlukan oleh tubuh.


Definisi Lipid

Lipid terdapat dalam makanan sebagian besar berupa lemak. Pada umumnya lipid merupakan konduktor panas yang jelek, sehingga lipid dalam tubuh mempunyai fungsi untuk mencegah terjadinya kehilangan panas dari tubuh. Makin banyak jumlah lemak, makin baik fungsinya mempertahankan panas dalam tubuh. Pada proses oksidasi 1 gram lemak menghasilkan energi sebesar 9 kkal, sedangkan 1 gram karbohidrat maupun protein hanya menghasilkan 4 kkal. Selain itu lemak mempunyai fungsi melindungi organ-organ tubuh tertentu dari kerusakan akibat benturan atau goncangan.

Pencernaan lemak terutama terjadi dalam usus, karena dalam mulut dan lambung tidak terdapat enzim lipase yang dapat menghidrolisis lemak. Dalam usus, lemak diubah dalam bentuk emulsi, sehingga mudah berhubungan dengan enzim steapsin dalam cairan pankreas. Hasil akhir proses pencernaan lemak ialah asam lemak, gliserol, monogliserida, digliserida serta sisa trigliserida.


Pengertian Lipid

Lemak, disebut juga lipid, adalah suatu zat yang kaya akan energi, berfungsi sebagai sumber energi yang utama untuk proses metabolisme tubuh. Lemak yang beredar di dalam tubuh diperoleh dari dua sumber yaitu dari makanan dan hasil produksi organ hati, yang bisa disimpan di dalam sel-sel lemak sebagai cadangan energi. Lipid adalah molekul-molekul biologis yang tidak larut di dalam air tetapi larut di dalam pelarut-pelarut organik atau pelarut non polar seperti etanol, eter, kloroform dan benzen.


Fungsi Lipid

Ada beberapa fungsi lipid di antaranya:

  • Sebagai penyusun struktur  membran sel
    Dalam hal ini lipid berperan sebagai barier untuk sel dan mengatur aliran material-material.
  • Sebagai cadangan energy
    Lipid disimpan sebagai jaringan adipose. Contoh trigliserida atau triasilgliserol
  • Sebagai penghasil energi, contoh asam lemak ( asam palmitat )
  • Sebagai pelindung, lipida disekitar ginjal
  • Sebagai alat transport dalam darah, contoh lipoprotein
  • Sebagai insulator, dalam susunan saraf ( sebagai insulator listrik )
  • Sebagai insulator panas, lipida dibawah kulit
  • Sebagai hormon danvitamin
  • Hormon mengatur komunikasi antar sel, sedangkan vitamin membantu regulasi proses-proses biologis

Jenis-jenis Lipid

Asam lemak

Asam lemak merupakan asam monokarboksilat rantai panjang. Adapun rumus umum dari asam lemak adalah:

CH3(CH2)nCOOH    atau     CnH2n+1-COOH

Rentang ukuran dari asam lemak adalah C12 sampai dengan C24. Ada dua macam asam lemak yaitu:

  1. Asam lemak jenuh (saturated fatty acid)
    Asam lemak ini tidak memiliki ikatan rangkap
  1. Asam lemak tak jenuh (unsaturated fatty acid)
    Asam lemak ini memiliki satu atau lebih ikatan rangkap

 

Beberapa contoh struktur asam lemak

Gliserida

Terdiri atas

  • Gliserida netral (Lemak netral)

Gliserida netral adalah ester antara asam lemak dengan gliserol. Fungsi dasar dari gliserida netral adalah sebagai simpanan energi (berupa lemak atau minyak). Setiap gliserol mungkin berikatan dengan 1, 2 atau 3 asam lemak yang tidak harus sama. Jika gliserol berikatan dengan 1 asam lemak disebut monogliserida, jika berikatan dengan 2 asam lemak disebut digliserida dan jika berikatan dengan 3 asam lemak dinamakan trigliserida. Trigliserida merupakan cadangan energi penting dari sumber lipid.


Struktur trigliserida sebagai lemak netral

Apa yang dimaksud dengan lemak (fat) dan minyak (oil)? Lemak dan minyak keduanya merupakan trigliserida. Adapun perbedaan sifat secara umum dari keduanya adalah:

  • Lemak
  1. Umumnya diperoleh dari hewan
  2. Berwujud padat pada suhu ruang
  3. Tersusun dari asam lemak jenuh

  • Minyak
  1. Umumnya diperoleh dari tumbuhan
  2. Berwujud cair pada suhu ruang
  3. Tersusun dari asam lemak tak jenuh
  • Fosfogliserida (fosfolipid)

Lipid dapat mengandung gugus fosfat. Lemak termodifikasi ketika fosfat mengganti salah satu rantai asam lemak. Penggunaan fosfogliserida adalah

  1. Sebagai komponen penyusun membran sel
  2. Sebagi agen emulsi

Fosfolipid bilayer (lapisan ganda) sebagai penyusun membran sel


Lipid kompleks

Lipid kompleks adalah kombinasi antara lipid dengan molekul lain. Contoh penting dari lipid kompleks adalah lipoprotein dan glikolipid.

  • Lipoprotein
    Lipoprotein merupakan gabungan antara lipid dengan protein.

Lipid kompleks


Non Gliserida

Terdiri atas sfingolipid, steroid dan malam

Lipid jenis ini tidak mengandung gliserol. Jadi asam lemak bergabung dengan molekul-molekul non gliserol. Yang termasuk ke dalam jenis ini adalah

  • Sfingolipid

Sifongolipid adalah fosfolipid yang tidak diturunkan dari lemak. Penggunaan primer dari sfingolipid adalah sebagai penyusun selubung mielin serabut saraf. Pada manusia, 25% dari lipid merupakan sfingolipid.

Struktur kimia sfingomielin (perhatikan 4 komponen penyusunnya)


Metabolisme Lipid

Lipid yang kita peroleh sebagai sumber energi utamanya adalah dari lipid netral, yaitu trigliserid (ester antara gliserol dengan 3 asam lemak). Secara ringkas, hasil dari pencernaan lipid adalah asam lemak dan gliserol, selain itu ada juga yang masih berupa monogliserid. Karena larut dalam air, gliserol masuk sirkulasi portal (vena porta) menuju hati. Asam-asam lemak rantai pendek juga dapat melalui jalur ini.

Struktur miselus

 

Sebagian besar asam lemak dan monogliserida karena tidak larut dalam air, maka diangkut oleh miselus (dalam bentuk besar disebut emulsi) dan dilepaskan ke dalam sel epitel usus (enterosit). Di dalam sel ini asam lemak dan monogliserida segera dibentuk menjadi trigliserida (lipid) dan berkumpul berbentuk gelembung yang disebut kilomikron. Selanjutnya kilomikron ditransportasikan melalui pembuluh limfe dan bermuara pada vena kava, sehingga bersatu dengan sirkulasi darah. Kilomikron ini kemudian ditransportasikan menuju hati dan jaringan adiposa.


Struktur kilomikron

Simpanan trigliserida pada sitoplasma sel jaringan adiposa

 

Di dalam sel-sel hati dan jaringan adiposa, kilomikron segera dipecah menjadi asam-asam lemak dan gliserol. Selanjutnya asam-asam lemak dan gliserol tersebut, dibentuk kembali menjadi simpanan trigliserida. Proses pembentukan trigliserida ini dinamakan esterifikasi. Sewaktu-waktu jika kita membutuhkan energi dari lipid, trigliserida dipecah menjadi asam lemak dan gliserol, untuk ditransportasikan menuju sel-sel untuk dioksidasi menjadi energi. Proses pemecahan lemak jaringan ini dinamakan lipolisis. Asam lemak tersebut ditransportasikan  oleh albumin ke jaringan yang memerlukan dan disebut sebagai asam lemak bebas (free fatty acid/FFA).


Secara ringkas, hasil akhir dari pemecahan lipid dari makanan adalah asam lemak dan gliserol. Jika sumber energi dari karbohidrat telah mencukupi, maka asam lemak mengalami esterifikasi yaitu membentuk ester dengan gliserol menjadi trigliserida sebagai cadangan energi jangka panjang. Jika sewaktu-waktu tak tersedia sumber energi dari karbohidrat barulah asam lemak dioksidasi, baik asam lemak dari diet maupun jika harus memecah cadangan trigliserida jaringan. Proses pemecahan trigliserida ini dinamakan lipolisis.


Proses oksidasi asam lemak dinamakan oksidasi beta dan menghasilkan asetil KoA. Selanjutnya sebagaimana asetil KoA dari hasil metabolisme karbohidrat dan protein, asetil KoA dari jalur inipun akan masuk ke dalam siklus asam sitrat sehingga dihasilkan energi. Di sisi lain, jika kebutuhan energi sudah mencukupi, asetil KoA dapat mengalami lipogenesis menjadi asam lemak dan selanjutnya dapat disimpan sebagai trigliserida.


Beberapa lipid non gliserida disintesis dari asetil KoA. Asetil KoA mengalami kolesterogenesis menjadi kolesterol. Selanjutnya kolesterol mengalami steroidogenesis membentuk steroid. Asetil KoA sebagai hasil oksidasi asam lemak juga berpotensi menghasilkan badan-badan keton (aseto asetat, hidroksi butirat dan aseton). Proses ini dinamakan ketogenesis. Badan-badan keton dapat menyebabkan gangguan keseimbangan asam-basa yang dinamakan asidosis metabolik. Keadaan ini dapat menyebabkan kematian.

Ikhtisar metabolisme lipid


Metabolisme Gliserol

 Gliserol sebagai hasil hidrolisis lipid (trigliserida) dapat menjadi sumber energi. Gliserol ini selanjutnya masuk ke dalam jalur metabolisme karbohidrat yaitu glikolisis. Pada tahap awal, gliserol mendapatkan 1 gugus fosfat dari ATP membentuk gliserol 3-fosfat. Selanjutnya senyawa ini masuk ke dalam rantai respirasi membentuk dihidroksi aseton fosfat, suatu produk antara dalam jalur glikolisis.

Reaksi-reaksi kimia dalam metabolisme gliserol

 

Aktivasi asam lemak menjadi asil KoA


Asam lemak bebas pada umumnya berupa asam-asam lemak rantai panjang. Asam lemak rantai panjang ini akan dapat masuk ke dalam mitokondria dengan bantuan senyawa karnitin, dengan rumus (CH3)3N+-CH2-CH(OH)-CH2-COO.

Mekanisme transportasi asam lemak


Langkah-langkah masuknya asil KoA ke dalam mitokondria dijelaskan sebagai berikut:

  • Asam lemak bebas (FFA) diaktifkan menjadi asil-KoA dengan dikatalisir oleh enzim tiokinase.
  • Setelah menjadi bentuk aktif, asil-KoA dikonversikan oleh enzim karnitin palmitoil transferase I yang terdapat pada membran eksterna mitokondria menjadi asil karnitin. Setelah menjadi asil karnitin, barulah senyawa tersebut bisa menembus membran interna mitokondria.
  • Pada membran interna mitokondria terdapat enzim karnitin asil karnitin translokase yang bertindak sebagai pengangkut asil karnitin ke dalam dan karnitin keluar.
  • Asil karnitin yang masuk ke dalam mitokondria selanjutnya bereaksi dengan KoA dengan dikatalisir oleh enzim karnitin palmitoiltransferase II yang ada di membran interna mitokondria menjadi Asil Koa dan karnitin dibebaskan.
  • Asil KoA yang sudah berada dalam mitokondria ini selanjutnya masuk dalam proses oksidasi beta.

Dalam oksidasi beta, asam lemak masuk ke dalam rangkaian siklus dengan 5 tahapan proses dan pada setiap proses, diangkat 2 atom C dengan hasil akhir berupa asetil KoA. Selanjutnya asetil KoA masuk ke dalam siklus asam sitrat. Dalam proses oksidasi ini, karbon β asam lemak dioksidasi menjadi keton.

Oksidasi asam lemak dengan 16 atom C

Aktivasi asam lemak, oksidasi beta dan siklus asam sitrat


Telah dijelaskan bahwa asam lemak dapat dioksidasi jika diaktifkan terlebih dahulu menjadi asil-KoA. Proses aktivasi ini membutuhkan energi sebesar 2P. (-2P).

Setelah berada di dalam mitokondria, asil-KoA akan mengalami tahap-tahap perubahan sebagai berikut:

  1. Asil-KoA diubah menjadi delta2-trans-enoil-KoA. Pada tahap ini terjadi rantai respirasi dengan menghasilkan energi 2P (+2P)
  2. delta2-trans-enoil-KoA diubah menjadi L(+)-3-hidroksi-asil-KoA
  3. L(+)-3-hidroksi-asil-KoA diubah menjadi 3-Ketoasil-KoA. Pada tahap ini terjadi rantai respirasi dengan menghasilkan energi 3P (+3P)
  4. Selanjutnya terbentuklah asetil KoA yang mengandung 2 atom C dan asil-KoA yang telah kehilangan 2 atom C.

Dalam satu oksidasi beta dihasilkan energi 2P dan 3P sehingga total energi satu kali oksidasi beta adalah 5P. Karena pada umumnya asam lemak memiliki banyak atom C, maka asil-KoA yang masih ada akan mengalami oksidasi beta kembali dan kehilangan lagi 2 atom C karena membentuk asetil KoA. Demikian seterusnya hingga hasil yang terakhir adalah 2 asetil-KoA. Asetil-KoA yang dihasilkan oleh oksidasi beta ini selanjutnya akan masuk siklus asam sitrat.


Penghitungan energi hasil metabolisme lipid

Dari uraian di atas kita bisa menghitung energi yang dihasilkan oleh oksidasi beta suatu asam lemak. Misalnya tersedia sebuah asam lemak dengan 10 atom C, maka kita memerlukan energi 2 ATP untuk aktivasi, dan energi yang di hasilkan oleh oksidasi beta adalah 10 dibagi 2 dikurangi 1, yaitu 4 kali oksidasi beta, berarti hasilnya adalah 4 x 5 = 20 ATP. Karena asam lemak memiliki 10 atom C, maka asetil-KoA yang terbentuk adalah 5 buah.


Setiap asetil-KoA akan masuk ke dalam siklus Kreb’s yang masing-masing akan menghasilkan 12 ATP, sehingga totalnya adalah 5 X 12 ATP = 60 ATP. Dengan demikian sebuah asam lemak dengan 10 atom C, akan dimetabolisir dengan hasil -2 ATP (untuk aktivasi) + 20 ATP (hasil oksidasi beta) + 60 ATP (hasil siklus Kreb’s) = 78 ATP.


Sebagian dari asetil-KoA akan berubah menjadi asetoasetat, selanjutnya asetoasetat berubah menjadi hidroksi butirat dan aseton. Aseto asetat, hidroksi butirat dan aseton dikenal sebagai badan-badan keton. Proses perubahan asetil-KoA menjadi benda-benda keton dinamakan ketogenesis.


Proses ketogenesis

Lintasan ketogenesis di hati


Sebagian dari asetil KoA dapat diubah menjadi kolesterol (prosesnya dinamakan kolesterogenesis) yang selanjutnya dapat digunakan sebagai bahan untuk disintesis menjadi steroid (prosesnya dinamakan steroidogenesis).

Gambar Lintasan kolesterogenesis


Kelainan Dan Gangguan Pada Metabolisme Lemak

  • Penyakit Wolman

Penyakit Wolman adalah gangguan yang dihasilkan ketika jenis spesifik pada kolesterol dan gliserida menumpuk di jaringan, gangguan ini disebabkan pembesaran limpa dan hati. Penyimpanan kalsium pada kelenjar adrenalin membuat mereka lebih keras, dan diare lemak (steatorrhea) juga terjadi. Bayi dengan penyakit Wolman biasanya meninggal dalam usia 6 bulan.


  • Cerebrotendinous xanthomatosis

Terjadi ketika cholestanol, produk pada metabolisme kolesterol, menumpuk pada jaringan. Gangguan ini segera megakibatkan gerakan yang tidak terkoordinasi, dementia, katarak, dan perkembangan lemak (xanthomas) pada tendon. Gejala-gejala kelumpuhan sering muncul setelah usia 30 tahun. Jika mulai lebih awal, obat chenodiol membantu mencegah perkembangan penyakit ini, tetapi tidak dapat membatalkan kerusakan apapun yang terjadi.


  • Pada sitosterolemia

Lemak dari buah-buahan dan sayuran menumpuk di darah dan jaringan. Pembentukan lemak menyebabkan atherosclerosis, sel darah merah yang tidak normal, dan penyimpanan lemak pada tendon (xanthomas). Pengobatan terdiri dari pengurangan asupan makanan yang kaya akan lemak tumbuhan, seperti minyak sayur, dan menggunakan resin cholestyramine.


  • Penyakit Gaucher’s

Glucocerebroside, yang menghasilkan metabolisme lemak, menumpuk di jaringan. Penyakit gaucher adalah lipidosis yang paling sering terjadi. Penyakit tersebut paling umum pada orang-orang yahudi Ashkenazi (eropa timur). Penyakit gaucher menyebabkan pembesaran hati dan limpa dan pewarnaan coklat pada kulit. Penumpukan glucocerebroside pada mata menyebabkan bercak kuning yang disebut pingueculae akan terlihat. Penumpukan pada tulang rawan bisa menyebabkan nyeri dan menghancurkan tulang.


Kebanyakan orang mengalamu penyakit gaucher jenis 1, bentuk kronis, yang menghasilkan pembesaran hati dan limpa dan kelainan tulang. Kebanyakan adalah orang dewasa, tetapi anak-anak juga bisa mengalami jenis 1. Jenis 2, bentuk infantile, terbentuk pada masa bayi, bayi dengan penyakit ini mengalami pembesaran limpa dan kelainan sistem syaraf berat dan biasanya meninggal dalam waktu setahun. Jenis 3, bentuk juvenile, bisa dimulai kapan saja selama masa kanak-kanak.


Anak dengan penyakit ini mengalami pembesaran hati dan limpa, kelainan tulang, dan kelainan sistem syaraf yang berkembang dengan lambat. Anak yang bertahan hidup sampai remaja bisa hidup untuk beberapa tahun. Kebanyakan orang dengan penyakit gaucher bisa diobati dengan terapi penggantian enzim, dimana enzim diberikan dengan cara infus, biasanya setiap 2 minggu. Terapi penggantian enzim lebih efektif untuk orang yang tidak mengalami komplikasi sistem syaraf.


  • Pada penyakit tay-sach

Ganglioside, yang menghasilkan metabolisme lemak, menumpuk pada jaringan. Penyakit tersebut paling sering terjadi asli yahudi di eropa timur. Pada usia yang sangat dini, anak dengan penyakit ini menjadi semakin lambat dan tampak mengalami sifat otot yang terkulai. Terbentuk kejang diikuti kelumpuhan, dementia, dan kebutaan. Anak ini biasanya meninggal di usia 3 atau 4 tahun. Penyakit tay-sachs bisa diidentifikasikan pada janin dengan contoh chorionic villus atau amniocentesis. Penyakit tersebut tidak dapat diobati atau disembuhkan.


  • Penyakit Niemann-Pick,

Kekurangan enzim khusus mengakibatkan penumpukan sphingomyelin (produk metabolisme lemak) atau kolesterol. Penyakit Niemann-Pick mempunya beberapa bentuk, bergantung pada beratnya enzim yang berkurang dan dengan demikian penumpukan sphingomyelin atau kolesterol. Bentuk yang paling berat cenderung terjadi pada orang yahudi. Bentuk yang lebih ringan terjadi pada semua kelompok etnis.


Pada bentuk berat yang sering terjadi (jenis A), anak gagal untuk bertumbuh dengan baik dan mengalami masalah multiple neurologic. Anak ini biasanya meninggal di usia 3 tahun. Anak dengan penyakit jenis B mengalami pertumbuhan lemak di kulit, daerah berpigmen gelap, dan pembesaran hati, limpa, dan batang limpa; mereka kemungkinan lambat secara mental.


Anak dengan penyakit jenis C mengalami gejala-gejala di masa kanak-kanak, dengan serangan dan kerusakan syaraf. Beberapa bentuk penyakit Niemann-Pick bisa didiagnosa pada janin dengan contoh chrionic villus atau amniocentesis. Setelah lahir, diagnosa bisa dibuat dengan biopsi hati (pengangkatan contoh jaringan untuk diteliti di bawah mikroskop). Tidak satupun jenis pada penyakit Niemann-Pick ini bisa disembuhkan, dan anak cenderung meninggal karena infeksi atau gangguan progresif pada sistem syaraf pusat.


  • Penyakit Fabry

Glycolipid, yang merupakan hasil metabolisme lemak, menumpuk pada jaringan. Karena gen tidak sempurna untuk gangguan langka ini dibawa pada kromosom X, penyakit full-blown terjadi hanya pada pria. Penumpukan glycolipid menyebabkan pertumbuhan pada kulit yang tidak bersifat kanker (angiokeratomas) untuk terbentuk di sepanjang bagian bawah tubuh. Kornea menjadi berawan, mengakibatkan pandangan buruk. Rasa terbakar bisa terjadi pada lengan dan kaki, dan orang tersebut bisa mengalami peristiwa demam. Orang dengan penyakit fabry segera mengalami gagal ginjal dan penyakit jantung, meskipun seringkali mereka hidup ke dalam masa dewasa. Gagal ginjal bisa menyebabkan tekanan darah tinggi, yang bisa mengakibatkan stroke.


Penyakit Fabry bisa didiagnosa di dalam janin dengan contoh chorionic villus atau amniocentesis. Penyakit Fabry tidak dapat disembuhkan atau bahkan diobati secara lsngsung, tetapi peneliti menginvestigasikan sebuah pengobatan dimana kekurangan enzim digantikan dengan transfusi. Pengobatan terdiri dari penggunaan analgesik untuk membantu menghilangkan rasa sakit dan demam, orang dengan kerusakan ginjal bisa memerlukan pencangkokan ginjal.


Demikianlah pembahasan mengenai Metabolisme Lipid – Kelainan, Lemak, Pada Tumbuhan, Jalur Normal semoga dengan adanya ulasan tersebut dapat menambah wawasan dan pengetahuan anda semua, terima kasih banyak atas kunjungannya. 🙂 🙂 🙂