Sumber Energi adalah

Diposting pada

Sumber Energi – Pengertian, Jenis, Perubahan dan Pemanfaatan – Untuk pembahasan kali ini kami akan mengulas mengenai Apresiasi yang dimana dalam hal ini meliputi sumber, pengertian, jenis, perubahan dan pemanfaatan, nah agar dapat lebih memahami dan dimengerti simak ulasan selengkapnya dibawah ini.

Sumber Energi

Pengertian Energi

Energi adalah kemampuan melakukan kerja. Disebut demikian karena setiap kerja yang dilakukan sekecil apapun dan seringan apapun tetap membutuhkan energi. Menurut KBBI energi didefiniskan sebagai daya atau kekuatan yang diperlukan untuk melakukan berbagai proses kegiatan. Energi merupakan bagian dari suatu benda tetapi tidak terikat pada benda tersebut. Energi bersifat fleksibel artinya dapat berpindah dan berubah.


Berikut beberapa pendapat ahli tentang pengertian energi.

  1. Energi adalah kemampuan membuat sesuatu terjadi (Robert L. Wolke)
  2. Energi adalah  kemampuan benda untuk melakukan usaha (Mikrajuddin)
  3. Energi adalah suatu bentuk kekuatan yang dihasilkan atau dimiliki oleh suatu benda (Pardiyono)
  4. Energi adalah sebuah konsep dasar termodinamika dan merupakan salah satu aspek penting dalam analisis teknik (Michael J. Moran), dll

Dari berbagai pengertian dan definisi energi diatas dapat disimpulkan bahwa secara umum energi dapat didefinisikan sebagai kekuatan yang dimilki oleh suatu benda sehingga mampu untuk melakukan kerja.

Baca Juga Artikel yang Mungkin Berkaitan : Sifat Cahaya


Kebutuhan Energi di Indonesia

Semakin lama energi yang dibutuhkan untuk negara Indonesia semakin meningkat. Dan pemerintah semakin kesulitan untuk memenuhinya. Buktinya akhir-akhir ini sering kita dengar tentang pemadaman bergilir yang dilakukan oleh sejumlah daerah karena keterlambatan datangnya batubara.


Sudah dikemukakan bahwa keberhasilan pembangunan terlebih lagi dalam rangka menggerakkan perindustrian di Indonesia, maka kebutuhan energi akan terus meningkat dengan pesat. Masalah kebutuhan energi dan usaha untuk mencukupinya merupakan masalah serius yang harus dipikirkan, agar energi primer khususnya energi fosil yang ada tidak terkuras habis hanya “sekedar dibakar “untuk menghasilkan tenaga listrik.


Padahal sumber daya alam energi fosil merupakan sumber kekayaan yang sangat berharga bila digunakan sebagai bahan dasar industri petrokimia. Dalam bidang industri petrokimia ini Indonesia sudah cukup berpengalaman mulai dari mendesain, membangunnya sampai dengan mengoperasikannya, sehingga pemanfaatan bahan bakar fosil melalui industri petrokimia jelas akan mendatangkan devisa yang sangat besar.


Atas dasar pemikiran ini maka sebaiknya sumber daya alam energi fosil difokuskan untuk industri petrokimia, sedangkan kebutuhan energi dipikirkan dari sumber energi primer lainnya misalnya energi panas bumi.

Baca Juga Artikel yang Mungkin Berkaitan : Komet adalah


Tabel 1 Cadangan energi primer dunia.
cadangan Minyak Bumi Indonesia  1,1 % Timur Tengah 70 %
Cadangan Gas Bumi Indonesia  1-2 % Rusia  25 %
Cadangan Batubara Indonesia  3,1 % Amaerika Utara  25 %

Sedangkan cadangan energi panas bumi di Indonesia relatif lebih besar bila dibandingkan dengan cadangan energi primer lainnya, hanya saja belum dimanfaatkan secara optimal. Selain dari pada itu panas bumi adalah termasuk juga energi yang terbarukan, yaitu energi non fosil yang bila dikelola dengan baik maka sumberdayanya relatif tidak akan habis, jadi amat sangat menguntungkan.


Oleh karena mengantisipasi segera akan habisnya sumber- sumber daya energi fosil dan nuklir itu, negara-negara maju giat melakukan litbang (penelitian dan pengembangan) untuk menemukan dan memanfaatkan sumber-sumber daya energi alternatif.


Pasir, seperti diceritakan Dr Wahyu Supartono, merupakan salah satu sumber energi alternatif. Biomassa yang dikedepankan Prof Wasrin Syafii juga merupakan sumber energi alternatif, dan bahkan lebih baik sebab sumber daya energi ini terbarukan.


Selama bertahun-tahun sejak masa Orde Baru sampai Orde Reformasi, pasir laut kita ditambang secara besar-besaran dengan kapal-kapal keruk. Penambangnya ada yang mengantongi izin resmi, ada juga secara liar mencuri pasir laut itu.


Pasir itu dijual ke Singapura dan dipakai negara jiran itu untuk mereklamasi pantainya sehingga negara pulau itu bertambah areanya. Jadi, pasir laut itu hanya dinilai sebagai tanah uruk (land-fill), dan karena dibeli secara borongan dengan partai besar, harganya sangat murah. Entah sudah berapa ratus ribu ton pasir laut kita diobral ke Singapura. Laut di sana menjadi keruh sehingga ikannya menyingkir dan tak lagi dapat ditangkap oleh nelayan tradisional di Kepulauan Riau.

Baca Juga Artikel yang Mungkin Berkaitan : Akibat Revolusi Bumi


Dr Wahyu Supartono menerangkan bahwa pasir itu dapat dimanfaatkan sebagai sumber energi. Konstituen utamanya, yakni silisium, juga dapat diolah menjadi silikon, salah satu bahan semikonduktor yang dipakai untuk memproduksi peranti-peranti elektronik (electronic devices).


MOSFET (metal-oxyde semiconductor field-effect transistor) sudah lama dikenal sebagai peranti yang dapat difungsikan sebagai gerbang elektronik. Puluhan bahkan ratusan ribu peranti semacam itu dapat dirangkun ke dalam satu cebis tunggal.


Istilah teknisnya VLSI (very large scale integration) atau perangkunan berskala amat besar. Walaupun sudah tertinggal sangat jauh, putra-putri bangsa kita juga melakukan penelitian di bidang ini.


Dr Tatty Menko di ITB, misalnya, sedang menggarap “cetakan” untuk merangkai peranti-peranti semikonduktor itu menjadi cebis renik (microchip) dengan perangkunan berskala besar (LSI/large scale integration).


Prof Mohamad Barmawi, juga dari ITB, meneliti kemungkinan penggunaan silikon nitrida yang dibuat dengan teknik pendadahan (doping) khusus untuk membuat diode pancar cahaya (LED/light-emitting diode) dengan efisiensi konversi ke cahaya yang tinggi, dan dengan spektrum yang mendekati cahaya alam di siang hari.


Potensi yang terkandung dalam pasir laut ini sama sekali tidak diperhitungkan sehingga juga tidak dikertaaji (not monetized). Singapura memang memakai pasir laut yang diimpor dari Indonesia sebagai tanah uruk. Tetapi pada ketepatan waktunya kelak, kalau perlu negara pulau kecil yang ipteknya berkembang dengan pesat itu dapat saja menambang pasir lagi dari pantainya, lalu mengekstraksi silikonnya.


Simulasi numerik

Simulasi numerik potensi daya listrik di beberapa daerah di Indonesia telah dilakukan oleh Laboratorium Hidrodinamika Indonesia BPP Teknologi. Simulasi potensi daya listrik di selat Bali dan Lombok dengan menggunakan program MEC-Model buatan Research Committee of Marine Environment, The Society of Naval Architects of Japan.

Baca Juga Artikel yang Mungkin Berkaitan : Akibat Rotasi Bumi


Dengan asumsi efisiensi turbin sebesar 0,593 dan menggunakan kecepatan arus rata-rata selama satu periode pasang surut (residual current) untuk tidal constant M2, potensi daya listrik di beberapa tempat di selat Bali pada kedalaman 12 meter, kondisi pasang perbani, dapat mencapai 300 kW bila menggunakan daun turbin dengan diameter 10 meter. Untuk selat Badung dan selat Lombok bagian selatan potensi energinya berkisar 80-90 kW.


Hasil numerik tersebut dapat digunakan sebagai dasar pemilihan lokasi untuk instalasi turbin arus. Hasil ini masih bersifat global dan kasar. Untuk mengetahui karakteristik kecepatan arus secara lebih detail di tempat-tempat terpilih, perlu diadakan survei lapangan atau simulasi numerik detail dengan menggunakan program khusus Full-3D yang juga disediakan oleh MEC-Model program.


Ada dua jenis rotor (daun turbin) untuk konversi energi kinetik, yang pertama adalah jenis rotor yang mirip dengan kincir angin. Tipe ini sering disebut juga dengan turbin dengan poros horizontal. Yang kedua adalah cross-flow rotor atau rotor Darrieus. Ini adalah tipe turbin dengan poros vertikal karena porosnya tegak lurus dengan arah arus.


Menurut PL Fraenkel, rotor Darrieus mempunyai beberapa kekurangan, rotor tidak dapat langsung berputar, kalau sudah berputar sulit dihentikan bila ada keadaan darurat, dan butuh ongkos tambah untuk konstruksinya. Untuk mempertinggi efisiensi, kedua tipe rotor ini biasanya ditambahi dengan nozzle, duct, atau venturi untuk mempercepat aliran arus yang masuk ke piringan daun rotor.


Dewasa ini penelitian tentang teknologi konversi arus laut menjadi energi listrik sedang berlangsung sangat gencar. Inggris sudah memasang prototipe skala penuh dengan kapasitas 300 MW di Foreland Point, North Devon, pada Mei 2003. Norwegia juga telah melakukan instalasi di Kvalsundet Hammerfest dengan kapasitas 700 MW.


Jepang, dengan menggunakan program MEC-Model, melakukan studi kelayakan pemasangan turbin di Selat Kanmon antara Pulau Honshu dan Kyushu. Indonesia sebagai negara kepulauan terbesar di dunia seharusnya mulai meneliti secara intensif potensi energi arus laut ini dan memanfaatkannya untuk menghadapi bencana krisis energi karena masalah kenaikan harga dan langkanya BBM.

Baca Juga Artikel yang Mungkin Berkaitan : Hukum Newton


Penyediaan Energi di Indonesia

Mengingat akan banyaknya kebutuhan energi yang diperlukan untuk menggerakkan pembangunan khususnya dalam bidang industri seperti telah ditampilkan pada Grafik l di atas, maka persoalan berikutnya adalah bagaimana mengenai penyediaan energi untuk memenuhi kebutuhan energi tersebut. Mengenai penyediaan energi tersebut usaha diversifikasi telah dilakukan agar kebutuhan energi tidak semata-mata tergantung pada minyak bumi saja.


Bila dikaji dari data yang telah diolah , tampak bahwa usaha diversifikasi energi primer telah berhasil menurunkan pangsa pemakaian minyak bumi dalam usaha memenuhi kebutuhan energi dari 63,7 % pada akhir Pelita V menjadi 52,3 % pada akhir Pelita Vl. Sedangkan pangsa pemakaian batubara mengalami kenaikan dari 8,2 % pada akhir Pelita V menjadi 17,5 % pada tahun 1998/99 ini.


Selain dari pada itu, bila dikaji lebih cermat ternyata pemakaian energi panas bumi yang selama ini sering terabaikan, ternyata sudah mulai diperhatikan sebagai usaha mencukupi kebutuhan energi di Indonesia. Hal ini tampak dari kenyataan bahwa pada tahun 1994/95 (akhir Pelita V) pangsa energi panas bumi hampir tak berarti hanya sekitar 0,6 % saja dari seluruh pemenuhan kelzutuhan energi, akan tetapi pada tahun 1998/99 pangsa energi panas bumi telah naik hampir 3 kali lipat menjadi 1,7 %. Keadaan ini sudah barang tentu sangat memberikan harapan bagi pengembangan energi panas bumi pada masa mendatang.


Oleh karena itu kita harus pandai-pandai untuk menghemat energi. Bukan hanya energi listrik beberapa pekan yang lalu kita dengar adanya pemadaman listrik disejumlah daerah, tetapi juga energi yang lain seperti minyak goring. Di berita saat ini sedang marak dibicarakan tentang kenaikan minyak goreng ataupun kelangkaan minyak goreng di beberapa daerah. Padahal kita tahu Indonesia termasuk salah satu anggota OPEC. OPEC adalah organisasi bagi negara-negara pertambangan minyak. Dan saat ini terancam dikeluarkan dari OPEC


Jenis Sumber Energi

Berikut ini terdapat beberapa jenis sumber energi, diantaranya adalah:


1. Sumber Energi Tak Terbarukan

Sumber Energi Tak Terbarukan

Energi tak terbarukan adalah energi yang diperoleh dari sumber daya alam yang waktu pembentukannya sampai jutaan tahun. Dikatakan tak terbarukan karena, apabila sejumlah sumbernya dieksploitasikan, maka untuk mengganti sumber sejenis dengan jumlah sama, baru mungkin atau belum pasti akan terjadi jutaan tahun yang akan datang. Hal ini karena, disamping waktu terbentuknya yang sangat lama, cara terbentuknya lingkungan tempat terkumpulkan bahan dasar sumber energi inipun tergantung dari proses dan keadaan geologi saat itu.


Contoh sumber energi tak terbarukan adalah :

a) Energi yang Berasal dari Fosil

Energi yang berasal dari fosil adalah energi yang kesediaan sumbernya di alam terbatas, sumber energi yang berasal dari fosil adalah batu bara, minyak bumi, dan gas alam.


  1. Batu Bara

Batu bara adalah salah satu bahan bakar fosil. Pengertian umumnya adalah batuan sedimen yang dapat terbakar, terbentuk dari endapan organik, utamanya adalah sisa-sisa tumbuhan dan terbentuk melalui proses pembatubaraan. Unsur-unsur utamanya terdiri dari karbon, hidrogen dan oksigen.


  1. Minyak Bumi

Minyak Bumi adalah cairan kental, berwarna coklat gelap, atau kehijauan yang mudah terbakar yang berada di lapisan atas dari beberapa area di kerak bumi. Minyak Bumi terdiri dari campuran kompleks dari berbagai hidrokarbon, sebagian besar seri alkana, tetapi bervariasi dalam penampilan, komposisi, dan kemurniannya. Minyak bumi diambil dari sumur minyak di pertambangan-pertambangan minyak. Lokasi sumur-sumur minyak ini didapatkan setelah melalui proses studi geologi, analisis sedimen, karakter dan struktur sumber, dan berbagai macam studi lainnya.


  1. Gas Alam

Gas alam sering juga disebut sebagai gas Bumi atau gas rawa, adalah bahan bakar fosil berbentuk gas yang terutama terdiri dari metana CH4). Ia dapat ditemukan di ladang minyak, ladang gas Bumi dan juga tambang batu bara. Ketika gas yang kaya dengan metana diproduksi melalui pembusukan oleh bakteri anaerobik dari bahan-bahan organik selain dari fosil, maka ia disebut biogas. Sumber biogas dapat ditemukan di rawa-rawa, tempat pembuangan akhir sampah, serta penampungan kotoran manusia dan hewan.

Baca Juga Artikel yang Mungkin Berkaitan : Hukum Pascal


b) Sumber Energi yang Berasal dari Mineral Alam

Mineral alam bisa dimanfaatkan menjadi sumber energi setelah melalui beberapa proses, contohnya uranium yang bisa menghasilkan energi nuklir.


2. Sumber Energi Terbarukan

Sumber Energi Terbarukan

Konsep energi terbarukan mulai dikenal pada tahun 1970-an, sebagai upaya untuk mengimbangi pengembangan energi berbahan bakar nuklir dan fosil. Definisi paling umum adalah sumber energi yang dapat dengan cepat dipulihkan kembali secara alami, dan prosesnya berkelanjutan.


  1. Energi Panas Bumi

Panas bumi adalah suatu bentuk energi panas atau energi termal yang dihasilkan dan disimpan di dalam bumi. Energi panas adalah energi yang menentukan temperatur suatu benda. Energi panas bumi berasal dari energi hasil pembentukan planet (20%) dan peluruhan radioaktif dari mineral (80%) Gradien panas bumi, yang didefinisikan dengan perbedaan temperatur antara inti bumi dan permukaannya, mengendalikan konduksi yang terus menerus terjadi dalam bentuk energi panas dari inti ke permukaan bumi.


Temperatur inti bumi mencapai lebih dari 5000 oC. Panas mengalir secara konduksi menuju bebatuan sekitar inti bumi. Panas ini menyebabkan bebatuan tersebut meleleh, membentuk magma. Magma mengalirkan panas secara konveksi dan bergerak naik karena magma yang berupa bebatuan cair memiliki massa jenis yang lebih rendah dari bebatuan padat. Magma memanaskan kerak bumi dan air yang mengalir di dalam kerak bumi, memanaskannya hingga mencapai 300 oC. Air yang panas ini menimbulkan tekanan tinggi sehingga air keluar dari kerak bumi.


Energi panas bumi dari inti Bumi lebih dekat ke permukaan di beberapa daerah. Uap panas atau air bawah tanah dapat dimanfaatkan, dibawa ke permukaan, dan dapat digunakan untuk membangkitkan listrik. Sumber tenaga panas bumi berada di beberapa bagian yang tidak stabil secara geologis seperti Islandia, Selandia Baru, Amerika Serikat, Filipina, dan Italia.


Dua wilayah yang paling menonjol selama ini di Amerika Serikat berada di kubah Yellowstone dan di utara California. Islandia menghasilkan tenaga panas bumi dan mengalirkan energi ke 66% dari semua rumah yang ada di Islandia pada tahun 2000, dalam bentuk energi panas secara langsung dan energi listrik melalui pembangkit listrik. 86% rumah yang ada di Islandia memanfaatkan panas bumi sebagai pemanas rumah.


Ada tiga cara pemanfaatan panas bumi:

  • Sebagai tenaga pembangkit listrik dan digunakan dalam bentuk listrik
  • Sebagai sumber panas yang dimanfaatkan secara langsung menggunakan pipa ke perut bumi
  • Sebagai pompa panas yang dipompa langsung dari perut bumi.

  1. Energi Surya

Energi surya adalah energi yang dikumpulkan secara langsung dari cahaya matahari. Tentu saja matahari tidak memberikan energi yang konstan untuk setiap titik di bumi, sehingga penggunaannya terbatas. Sel surya sering digunakan untuk mengisi daya baterai, di siang hari dan daya dari baterai tersebut digunakan di malam hari ketika cahaya matahari tidak tersedia. Tenaga surya dapat digunakan untuk:

  • Menghasilkan listrik menggunakan sel surya
  • Menghasilkan listrik Menggunakan menara surya
  • Memanaskan gedung secara langsung
  • Memanaskan gedung melalui pompa panas
  • Memanaskan makanan Menggunakan oven surya

  1. Tenaga Angin

Perbedaan temperatur di dua tempat yang berbeda menghasilkan tekanan udara yang berbeda, sehingga menghasilkan angin. Angin adalah gerakan materi (udara) dan telah diketahui sejak lama mampu menggerakkan turbin. Turbin angin dimanfaatkan untuk menghasilkan energi kinetik maupun energi listrik.


Energi yang tersedia dari angin adalah fungsi dari kecepatan angin; ketika kecepatan angin meningkat, maka energi keluarannya juga meningkat hingga ke batas maksimum energi yang mampu dihasilkan turbin tersebut. Wilayah dengan angin yang lebih kuat dan konstan seperti lepas pantai dan dataran tinggi, biasanya diutamakan untuk dibangun “ladang angin”.

Baca Juga Artikel yang Mungkin Berkaitan : Gelombang Elektromagnetik


  1. Tenaga Air

Energi air digunakan karena memiliki massa dan mampu mengalir. Air memiliki massa jenis 800 kali dibandingkan udara. Bahkan gerakan air yang lambat mampu diubah ke dalam bentuk energi lain. Turbin air didesain untuk mendapatkan energi dari berbagai jenis reservoir, yang diperhitungkan dari jumlah massa air, ketinggian, hingga kecepatan air. Energi air dimanfaatkan dalam bentuk:

  • Bendungan pembangkit listrik. Yang terbesar adalah Three Gorges dam di China.
  • Mikrohidro yang dibangun untuk membangkitkan listrik hingga skala 100 kilowatt. Umumnya dipakai di daerah terpencil yang memiliki banyak sumber air.
  • Run-of-the-river yang dibangun dengan memanfaatkan energi kinetik dari aliran air tanpa membutuhkan reservoir air yang besar.

  1. Biomassa

Tumbuhan biasanya menggunakan fotosintesis untuk menyimpan tenaga surya, udara, dan CO2. Bahan bakar bio (biofuel) adalah bahan bakar yang diperoleh dari biomassa – organisme atau produk dari metabolisme hewan, seperti kotoran dari sapi dan sebagainya. Ini juga merupakan salah satu sumber energi terbaharui.


Biasanya biomass dibakar untuk melepas energi kimia yang tersimpan di dalamnya, pengecualian ketika biofuel digunakan untuk bahan bakar fuel cell (misal direct methanol fuel cell dan direct ethanol fuel cell). Biomassa dapat digunakan langsung sebagai bahan bakar atau untuk memproduksi bahan bakar jenis lain seperti biodiesel, bioetanol, atau biogas tergantung sumbernya. Biomassa berbentuk biodiesel, bioetanol, dan biogas dapat dibakar dalam mesin pembakaran dalam atau pendidih secara langsung dengan kondisi tertentu.


Biomassa menjadi sumber energi terbarukan, jika laju pengambilan tidak melebihi laju produksinya, karena pada dasarnya biomassa merupakan bahan yang diproduksi oleh alam dalam waktu relatif singkat melalui berbagai proses biologis.


Berbagai kasus penggunaan biomassa yang tidak terbarukan sudah terjadi, seperti kasus deforestasi jaman romawi, dan yang sekarang terjadi, deforestasi hutan amazon. Gambut juga sebenarnya biomassa yang pendefinisiannya sebagai energi terbarukan cukup bias karena laju ekstraksi oleh manusia tidak sebanding dengan laju pertumbuhan lapisan gambut.


Ada tiga bentuk penggunaan biomassa, yaitu secara padat, cair, dan gas. Dan secara umum ada dua metode dalam memproduksi biomassa, yaitu dengan menumbuhkan organisme penghasil biomassa dan menggunakan bahan sisa hasil industri pengolahan makhluk hidup.


Ada tiga bentuk penggunaan biomassa, yaitu secara padat, cair, dan gas. Dan secara umum ada dua metode dalam memproduksi biomassa, yaitu dengan menumbuhkan organisme penghasil biomassa dan menggunakan bahan sisa hasil industri pengolahan makhluk hidup.


  • Bahan bakar bio cair

Bahan bakar bio cair biasanya berbentuk bioalkohol seperti metanol, etanol dan biodiesel. Biodiesel dapat digunakan pada kendaraan diesel modern dengan sedikit atau tanpa modifikasi dan dapat diperoleh dari limbah sayur dan minyak hewani serta lemak. Tergantung potensi setiap daerah, jagung, gula bit, tebu, dan beberapa jenis rumput dibudidayakan untuk menghasilkan bioetanol. Sedangkan biodiesel dihasilkan dari tanaman atau hasil tanaman yang mengandung minyak (kelapa sawit, kopra, biji jarak, alga) dan telah melalui berbagai proses seperti esterifikasi.


  • Biomassa Padat

Penggunaan langsung biasanya dalam bentuk padatan yang mudah terbakar, baik kayu bakar atau tanaman yang mudah terbakar. Tanaman dapat dibudidayakan secara khusus untuk pembakaran atau dapat digunakan untuk keperluan lain, seperti diolah di industri tertentu dan limbah hasil pengolahan yang bisa dibakar dijadikan bahan bakar.


Pembuatan briket biomassa juga menggunakan biomassa padat, di mana bahan bakunya bisa berupa potongan atau serpihan biomassa padat mentah atau yang telah melalui proses tertentu seperti pirolisis untuk meningkatkan persentase karbon dan mengurangi kadar airnya. Biomassa padat juga bisa diolah dengan cara gasifikasi untuk menghasilkan gas.


  • Biogas

Berbagai bahan organik, secara biologis dengan fermentasi, maupun secara fisiko-kimia dengan gasifikasi, dapat melepaskan gas yang mudah terbakar. Biogas dapat dengan mudah dihasilkan dari berbagai limbah dari industri yang ada saat ini, seperti produksi kertas, produksi gula, kotoran hewan peternakan, dan sebagainya.


Berbagai aliran limbah harus diencerkan dengan air dan dibiarkan secara alami berfermentasi, menghasilkan gas metana. Residu dari aktivitas fermentasi ini adalah pupuk yang kaya nitrogen, karbon, dan mineral.


  • Proses Pirolisa

Proses Pirolisa

Gambar diatas memperlihatkan suatu skema dan proses pirolisa yang mempergunakan limbah kota sebagai bahan baku. Limbah kota dimasukkan di tempat A dan dipotong hingga mencapai ukuran keeil. Kemudian bahan baku dibawa ke tempat B untuk dikeningkan.


Di tempat C dilakukan pernisahan: semua bahan organik sepenti potongan-potongan logam dan gelas disisihkan sedangkan matenal lainnya yang menupakan bahan organik dibawa ke tempat D untuk digiling halus. Bejana E merupakan reaktor pirolisa. Di tempat F basil-basil pirolisa berupa gas, minyak dan arang dipisahkan. Jika suhu dalam reaktor dinaikkan komponen gas akan menjadi lebih besar.


  • Proses Fermentasi Anaerobik untuk Membuat Metan

Skema Proses Fermentasi Anaerobik untuk Membuat Metan

Gambar diatas mencoba memperlihatkan skema sebuah instalasi gas biomassa. Di tempat A bahan orgarnk yang dipotong kecil-kecil dicampur dengan air dan dipompa ke tempat tangki pencernaan B. Di tangki mi terjadi proses pencernaan. Tingkat kecepatan pencennaan akan tergantung dad suhu dan suhu sekitar 35’C tampaknya membenikan basil optimal bagi produksi gas.


Gas yang dihasilkan itu dikeluarkan dad keran C. Endapan yang terjadi dalam tangki pencernaan yang mempunyai bentuk yang sangat padat dikeluarkan melalui keran D untuk dikeluarkan dan dapat dimanfaatkan untuk keperluan-kepenluan lain seperti pengurugan tanah. Cairan selebihnya dialirkan ke kolam oksidasi E.


Dad kolam mi cairan kental dialirkan kembali ke tangki pencemaan sedangkan cairan yang encer dimañfaatkan kembali untuk dicampur dengan masukan bahan organik barn. Cara umpan-balik mi mengunangi kepenluan menambah komponen-komponen campuran yang diperlukan sehingga meningkatkan efisiensi kerja instalasi.


  • Proses Fermentasi untuk Membuat Etanol

Fermentasi alkoholik merupakan suatu proses yang lama dikenal dan banyak dipakai. Etil alkohol atau etanol muda dibuat dan berbagai hasil pertanian yang mengandung gula. Ragi mengubah gula-gula heksose menjadi etanol dan dioksida karbon sesuai rumus di bawah mi:

Proses Fermentasi untuk Membuat Etanol

Jenis-jenis gula yang difermentasikan dapat berupa glukosa, fruktosa, sukrosa, maltosa, rafinosa dan manosa.


Gula tetes, suatu hasil tambahan dari produksi gula tebu mengandung 55% gula-gula dan dapat secara mudah dan murah difermentasikan menjadi etanol. Dalam proses demikian gula tetes diencerkan dengan air hingga mencapai kekentalan gula sebanyak 20%, kemudian dicampur dengan biakan ragi sebanyak 5% volume.


Campuran ini difermentasikan selama 2-3 hari hingga mencapai nilai alkohol setinggi 9-10%. Alkohol in i kemudian diambil dengan proses destilasi. Satu liter alkobol dengan kemurnian 95% dapat diperoleh dad 2,5 liter gula tetes dengan biaya yang rendah.


3. Sumber Energi Nuklir

Selain mengandung silikon, konon pasir laut yang dijual murah ke Singapura itu juga mengandung torium. Dr Anggraito Pramudito APU, dari PPNY-BATAN mengatakan hal itu kepada saya.


Waktu itu kami sedang mengikuti suatu konferensi internasional. Anggraito menyesalkan pengobralan pasir laut itu, sambil memberi saya makalah yang telah ditulisnya, tentang penguat energi (energy amplifier). Barangkali karena penguat energi itu merupakan bagian dari teknologi nuklir untuk membangkitkan energi elektrik, maka ia lalu menyinggung kandungan torium dalam pasir laut Riau.


Torium (Th-232) ialah bahan-bakar subur (fertile) karena dapat membiakkan bahan-bakar terbelahkan (fissile). Torium ialah unsur nomor 90 dalam Tabel Periodik. Di dalam inti atomnya terdapat 90 proton.


Dalam uranium alam, kadar uranium 233 (U-233) teramat sangat rendah, tetapi U-233 yang terbelahkan ini dapat diperoleh dari Th-232. Dengan menangkap neutron, Th-232 menjadi terteral (excited) dan memancarkan sebagian energinya berupa sinar gamma.


Oleh karena setelah tangkapan menyinar (radiative capture) ini Th-233 yang terbentuk dari Th-232 plus neutron itu belum mantap juga, maka ia meluruh (decays) dua kali berturut-turut dengan melepaskan zarah beta (elektron).


Karena di dalam inti atom tidak ada elektron, maka zarah beta itu pastilah tercipta ketika neutron di dalam inti berubah menjadi proton. Karena emisi zarah beta itu dua kali, maka inti torium itu memperoleh tambahan dua proton.


Nomor atom (jumlah proton di dalam inti)-nya bertambah dua, menjadi 90 + 2 = 92. Unsur nomor 92 ialah uranium. Jadi telah diperoleh U-233, dan U-233 sama baiknya dengan U-235 atau Pu-239 (plutonium), baik sebagai bahan bakar yang dipakai dalam PLTN untuk mebangkitkan energi elektrik maupun untuk membuat senjata nuklir!


Jadi, Singapura berpotensi untuk memperoleh keuntungan lebih besar lagi dari impor pasir lautnya dari Indonesia. India telah maju dalam perencanaan pemanfaatan torium sebagai bahan bakar subur.


4. Sumber Energi Geothermal

Upaya memanfaatkan sumber-sumber energi terbaharui tak terhindarkan akan mendorong lahirnya masalah lingkungan, seperti dalam kasus pembangunan waduk-waduk hidroelektris skala besar.


Sebagian besar organisasi-organisasi lingkungan hidup tidak mendukung langkah ini mengingat dampak sosial dan lingkungan yang buruk pengelolaan energi tersebut. Meskipun demikian, karena para ahli cukup optimis mengenai potensi sumber daya energi geothermal Indonesia, kita patut memperhatikan prasyarat-prasyarat apa yang terlebih dahulu harus dipenuhi agar penerapannya tetap ramah lingkungan.


Tergantung pada kondisi geologis masing-masing tempat, air yang berasal dari cadangan bawah tanah yang dipanaskan tenaga geothermal memiliki kandungan zat-zat metal berbahaya dan mengeluarkan gas-gas beracun seperti methan, hidrogen sulfide dan amonia. Pada satu sisi uap panas itu memang melahirkan energi. Namun, di sisi lainnya ia juga mengeluarkan zat kimia berbahaya ke udara.


Panas yang terkandung dalam limbah air secara ekologis juga memiliki kapasitas merusak jika dialirkan pada air di permukaan tanah. Untuk mencegah kontaminasi air di permukaan tanah, limbah air tersebut harus terlebih dahulu dimasukkan kembali ke dalam tempat penyimpanan awal mereka, sekalian mempertahankan tekanan cadangan panas yang ada.


Potensi kontaminasi air permukaan tanah harus dicegah dengan mengembangkan lubang pemboran yang tahan rembesan seperti digunakan dalam industri minyak. Selain itu, endapan dan kerak yang akan terus bertumpuk di pembangkit listrik yang mengandung metal dan sulfur harus diproses terlebih dahulu sebelum digunakan atau dibuang.


Sebagian besar potensi energi geothermal Indonesia bagaimanapun terletak di wilayah-wilayah yang sensitif dari segi lingkungan dan budaya, termasuk di antaranya wilayah hutan lindung di pegunungan. Oleh karena itu luas lahan yang dibutuhkan dalam pembangunan pembangkit tenaga listrik, akses jalan, dan jalur transmisi energi harus diperhatikan dengan baik dan ditekan resikonya. Kegiatan pembangkit tenaga listrik tidak boleh mengganggu pengguna air di hilir.


Tema ini telah menjadi perhatian besar di Bali. Walhi Bali telah menyuarakan keprihatinan mereka terhadap pelaksanaan proyek tersebut, yang sejak awal telah menjadi keprihatinan masyarakat yang tinggal di sekitar pusat pembangkit listrik geothermal di Bali. Kawasan yang diusulkan adalah hutan Bedugul yang kaya dengan tanaman asli yang langka.


Ke tiga danau, yang terkait dengan Dewi Danu Bratan (dewi pertanian rakyat Bali), memiliki arti yang sangat penting secara ilmiah, ekonomi dan agama. Pengalaman Bedugul menunjukkan bahwa, meskipun pembangkit listrik panas bumi lebih bersih dan sudah barang tentu ramah terhadap lingkungan daripada pembangkit listrik batubara, tetap harus terlebih dahulu mendapat penilaian resiko lingkungan dan sosial, dan mendapat kesepakatan dari komunitas lokal.


Perubahan Energi

Ketika sebuah batu jatuh dari suatu ketinggian, batu tersebut memiliki energy. Jika batu tersebut jatuh ke tanah, energy ini akan diubah menjadi energy panas (dapat teramati pada tanah yang menjadi hangat ketika terkena batu) dan energy bunyi. Jadi, energy tidak pernah hilang, tetapi diubah kedalam bentuk energy lain.


Dengan konsep di atas, maka energy dapat dimanfaatkan dalam kehidupan sehari-hari. Contoh perubahan energi antara lain sebagai berikut :

  1. Energi listrik menjadi energi cahaya, misalnya pada lampu
  2. Energi listrik menjadi energi kimia, misalnya pada pengisian aki, pengisian baterai isi ulang.
  3. Energi cahaya menjadi energi kimia, misalnya fotosintesis
  4. Energi listrik menjadi energi bunyi, misalnya bel listrik, radio, tape recorder, dan televise.
  5. Energi listrik menjadi energi gerak, misalnya kipas angin, blender, mikser dll.
  6. Energi listrik menjadi energi panas, misalnya setrika listrik, solder listrik, kompor listrik, magic jar, pemanggang listrik
  7. Energi listrik menjadi energi magnet, misaknya alat pengangkat besi yang menggunakan magnet listrik
  8. Energi kimia menjadi energi listrik, misalnya baterai dan aki pada saat digunakan
  9. Energy kimia menjadi energi gerak, misalnya makanan yang kita makan dapat menghasilkan energy sehingga kita dapat bergerak dan melakukan aktivitas
  10. Energi kimia menjadi panas, misalnya minyak tanah yang digunakan untuk menyalakan kompor menghasilkan panas
  11. Energi kinetic menjadi energi bunyi, misalnya benda yang jatuh dari ketinggian tertentu akan menghasilkan bunyi
  12. Energi gerak menjadi energi panas, misalnya roda-roda mesin yang saling bergesekan dapat menghsilkan panas
  13. Energi kinetic menjadi energi listrik, misalnya dinamo yang diputar atau digerakkan oleh ban sepeda

Pemanfaatan Energi

Berikut ini adalah contoh-contoh pemanfaatan energi dalam kehidupan sehari – hari:

  • Pesawat memanfaatkan tenaga dari putaran baling-baling
  • Sel surya memanfaatkan energi cahaya matahari
  • Perahu layar memanfaatkan energi angin
  • Terompet memanfaatkan energi dari tiupan
  • Kincir angin memanfaatkan energi angin
  • Kincir air memanfaatkan energi air
  • Dinamo sepeda memanfaatkan energi gerak
  • PLTN memanfaatkan energi nuklir
  • PLTU memanfaatkan energi uap

Demikianlah pembahasan mengenai Sumber Energi – Pengertian, Jenis, Perubahan dan Pemanfaatan semoga dengan adanya ulasan tersebut dapat menambah wawasan dan pengetahuan anda semua, terima kasih banyak atas kunjungannya. 🙂 🙂 🙂